College of Engineering Pune

Vision and Mission

Vision:

To be a leader amongst engineering institutions in India, offering value based world class education and constantly pursuing excellence.

Mission:

To strive for excellence in all facets of institute functioning.

COEP chartered in 1854 bore three fundamental values: strength, truth and endurance and captured these in its logo. While continuing to adhere to this original value system, COEP has gone ahead to include excellence in its mission.

COEP strives to create new knowledge through research, open the minds of students to the knowledge already available all around us, and create an academic ambience permitting freedom of expression, while respecting the dignity of each individual and make best advantage of the opportunities created through several clubs.

The college permits its students to explore their capabilities and interests and develop their full intellectual and human potential. The activities range from various art forms like dance, drama, music, to aero-modeling, automotive, boat club, environment club, entrepreneurship cell, history club, mind-spark, philosophy club, robotics club and zest, a sporting extravaganza.

The technologies being rapidly getting outdated, college has embarked on a mission to create individuals who are capable of learning on their own through a dictum learning to learn as a basic pedagogical philosophy with an eye for excellence.

Department of Instrumentation & Control

Vision & Mission

Vision:

To be a dynamic contributor to the global community through the development of expertise and dissemination of advance knowledge in the field of Instrumentation and Control and to create an environment that will facilitate the growth of individuals through innovative teaching, research and involvement of industry.

Mission:

- To provide high quality undergraduate and post graduate programs in Instrumentation and Control Engineering.
- To advance knowledge of Instrumentation and Control Engineering, strengthen and support R & D organizations/institutions, industry and enhance teaching.
- To work on socially relevant issues/problems, issues/problems of national importance

Program Education Objectives (PEOs):

- 1. To provide the students with solid foundation in mathematics, science and Instrumentation Engineering to solve real world problems appropriate to the discipline.
- 2. Be able to apply current industry accepted practices, new and emerging technologies to analyze, design, implement, and maintain state-of-art solutions.
- 3. Exhibit self- learning capabilities to assimilate and practice emerging theories and technologies. Exhibit teamwork and effective communication skills.
- 4. To inculcate professional and ethical attitude and ability to relate automation issues to society at large.
- 5. Be successfully employed or accepted into a graduate program / higher studies, and demonstrate a pursuit of lifelong learning.

Program Outcomes (POs):

On successful completion Graduates will demonstrate:

- a. An ability to apply knowledge of mathematics, Science and Engineering to Instrumentation and Control Discipline
- b. An ability to design and conduct experiments for measurement, measurement devices / elements, Control System, variety of control algorithms paradigms, final control elements, etc., and ability to analyze and interpret data.
- c. Be able to apply the principles and practices for instrument / system / equipment / device design and development to real world problems adhering to safety and regulatory standards as applicable.
- d. Be able to work effectively in a various team (may be multidisciplinary teams).
- e. An ability to identify, formulate and solve a problem in Instrumentation and Control Engineering
- f. Understand the social impact of automation, safety aspects of automation, hazards associated with various processes, environmental issues, professional ethics, etc.
- g. An ability to communicate effectively in oral and written form while formulating project proposals, reports and other related documents.
- h. Understand the impact of Instrumentation and Control solutions in a global, economic, environmental, and societal context.
- i. Demonstrate the knowledge and capabilities necessary for pursuing a professional career or graduate studies; recognize the need for continuing professional development.
- j. Understanding of contemporary and emerging technology for various processes and systems.
- k. Ability to select and use latest hardware and software tools for various processes and systems.
- I. Demonstrate an understanding of sensors / transducers, Control system, complete automation system.
- m. Demonstrate proficiency in using a high-level / low level programming languages and network protocols for embedded system applications and networked systems.

Sr.	Subject Title	Course	Con	Contact hours		Credits
01	Open Elective /Science Elective	OEC/SEC/	3	- -		3
	Course/Humanities Elective	HSSC				
02	Process Instrumentation	PCC	3	-	-	3
03	Project Engineering and Management	PCC	1	-	3	3
04	Departmental Elective-I	EC	3	-	-	3
05	Departmental Elective II	EC	3	-	-	3
06	Process Instrumentation Laboratory	LC	-	-	3	2
07	Industrial Automation Laboratory	LC	-	-	3	2
08	Project Stage I		-	-	-	2
09	Seminar		-	-	-	1
<mark>10</mark>	Liberal Learning Course	LLC	-	-	-	1
	Total		13	-	9	23

Final Year B. Tech (Instrumentation and Control) – Semester VII

List of Departmental Elective-I and II

Sr. No.	Elective Course Name	
01	Power Plant Instrumentation	
02	Medical Instrumentation	
03	Digital Control	
04	Embedded System	
05	Digital Image Processing	
06	Optical Instrumentation	

Process Instrumentation

Teaching Scheme	Examination Scheme
Lectures:3 hrs/week	Test-I-20
	Test-II-20
	End-Sem Exam- 60

Course Objectives:			
•	Design aspects of sensors and actuators for typical pilot plant Design advance controllers strategies Integrate various process loop components		

Unit 1	Study of Pilot Plants	(7hrs)		
Process flow diagram, design aspects for boiler, heat exchanger, evaporator, distillation column and spray dryer.				
Unit 2	Selection criteria of Process loop components	(7hrs)		
Design aspects and selection criteria for field instruments, development of instrumentation scheme for boiler, heat exchanger, evaporator, distillation column, spray dryer.				
Unit 3	Loop Component Design	(7hrs)		
Valve sizing 75.02, orific	as per standard ANSI/ISA-S-75.01, valve capacity & testing by AN e plate design as per ISO 5167standard.	ISI/ISA-S-		
Unit 4	Process Characteristics	(7hrs)		
Types of processes (dead time, single & multi capacity, self & non-self regulating, interacting & non-interacting, Linear & non-linear), Process gain, process reaction curve, process time constant & constant step analysis method for finding time constant, dead time, dynamic elements in control loops, PID control of processes, Process simulator.				
Unit 5	Analysis of some common loops	(7hrs)		
Flow, pressure, level, temperature, pH etc. configuration of PID controller for specific loop.				
Unit 6	Multi Loop & Multivariable process control systems	(7hrs)		
Feedback, feed forward control, cascade control, ratio control, selective control, split- range control. Interaction & decoupling, relative process gain matrices (RPG) & applications, statistical process controls.				
Course Outcomes:				
i. Apply the principles and practices for system design and development to plant				

operations [PEO2][PO-c]

- ii. Apply various control techniques to processes [PEO1] [PO-a]
- iii. Design multivariable control scheme [PEO5] [PO-i]

Text Books

- Bela G Liptak, "Instrument Engineers Handbook: Process Control", Chilton, 3rd ed., 1995.
- F. G. Shinskey, "Feedback controllers: Tuning, Applications & Design", McGraw-Hill, 4th ed., 2010.
- Krishna Kant, "Computer based Industrial control, Prentice Hall of India, First ed., 2009.
- F. G. Shinskey, "Process Control Systems", McGraw-Hill, 1996.

Reference Books

- William Andrews, "Applied Instrumentation in process industries ", Gulf, Second ed., 1979.
- Control Valve Handbook, Fisher Control International Inc., 3rd ed., 2001.
- G. Stephanopolous, "Chemical Process Control", Prentice Hall of India, 1984.
- Distillation column control ISA Publication
- ISA Handbook of Control Valves
- Douglas M. Considine, "Process Instrumentation and control Handbook", McGraw-Hill, 1984.

Project Engineering & Management

Teaching Scheme	Examination Scheme
Lectures: 1 hr/week	Test-I-20
	Test-II-20
	End-Sem Exam- 60

Cours	se Objectives:
•	Understand concept of project engineering management

- Understand flow of engineering project and related documentation
- Awareness to management and financial functions and usage of tools for the same

Unit 1	Introduction to project management	(5hrs)
Definition of	f project purpose - Scope, time, quality and organization str	ucture. Basic and
detailed eng	gineering: Degree of automation, Project S curves, manpowe	er considerations,

inter-department and inter organization interactions, Multi agency interaction. Types of projects and types of contracts e.g. EPC, BOOT etc.				
Unit 2	Project management functions	(4hrs)		
Controlling, influences a scheduling, work (SOW) structures, o	directing, project authority, responsibility, accountabili and standard communication formats, project reviews. proj life project engineering and management cycle phases,), projects specifications, bar charts, milestones, schedules, cost breakdown structures and planning cycle.	ty, interpersonal lect planning and the statement of work breakdown		
Unit 3	Project cost and estimation	(4hrs)		
Types and estimates, pricing process, salary and other overheads, man-hours, materials and support costs. program evaluation and review techniques (PERT) and critical path method (CPM), estimating activity time and total program time, total PERT/CPM planning crash times, software's used in project management.				
Course Ou	tcomes:			
 i. Understanding of different types of projects and its management [PEO-1][PO-a] ii. Designing different documents and understanding the tools used [PEO-2][PO-j] iii. Understanding project management and financial tools [PEO-2][PO-k] 				
Text Books :				
 W.G. Andrew and H.B. Williams, "Applied instrumentation in process industries" Gulf Professional Publishing, 3rd ed. 2008. Harlod Kerzner and Van Nostrand, "Project management: A systems approach to planning scheduling and controlling" Reinhold Publishing, 11th ed., 2010. 				
Reference Books:				
• Bela ed.,	 Bela G Liptak, "Instrument Engineers Handbook: Process Control", Chilton, 3rd ed., 1995. 			

Power Plant Instrumentation

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

Course Objectives:					
 Study of Instrumentation and Control Systems used in various power plants Understand various standards and protocols used in different power plants Discuss state of art technologies used in power sector 					
Unit 1	Introduction to Power Plant	(7hrs)			
Power plar nuclear, co efficiency, a	Power plant terminologies and key terms, power plant classification: thermal, hydro, nuclear, co-generation, comparison of various power plants based on technology, usage, efficiency, and limitations.				
Unit 2	Boiler Ancillaries	(7hrs)			
Various ancillaries used in steam generation units, viz. water treatment, electro-static precipitator, soot blower, economizer, de-aerator, super heater, chemical dosing systems, air pre-heater, coal and ash handling systems, fuel storage and distribution, bag house filters.					
Unit 3	Boiler Control	(7hrs)			
element dr gases, furr data acqui shut-down calculation,	element drum level control, steam temperature and pressure control, O ₂ /CO ₂ in flue gases, furnace draft, boiler interlocks, sequence event recorder, supervisory control, data acquisition controls, burner management systems and controllers, start-up and shut-down procedures, boiler safety standards, boiler inspection procedures, Boiler load calculation, boiler efficiency calculation.				
Unit 4	Turbine Instrumentation	(7hrs)			
Turbine ins turbine sup instrumenta	strumentation and control, start-up and shut-down, thermal stress pervisory instrumentation, condition monitoring, generator, power de ation.	s control, listribution			
Unit 5	Nuclear Power Plant Instrumentation:	(7hrs)			
Classification of nuclear reactors, nuclear reactor control loops, fuel cycle, control and safety instrumentation, reliability aspects and various modes of operations.					
Unit 6 Non-conventional energy sources and Power Distribution (7hrs) Schemes:					
Wind power, solar power, tidal power, diesel generator controls, sub station automation and smart grid.					
Course Outcome:					
 i. Understanding of Instrumentation used in power plant. [PEO1][PO-c] ii. Ability to demonstrate the standards used in power plants [PEO5][PO-i] iii. Understanding the impact of power plant operation in environmental and societal context [PEO4][PO-h] 					

Text Books

- Sam. G. Dukelow, "The Control of Boilers", ISA Press, New York, 2nd ed., 1991.
- David Lindsley, "Boiler Control Systems", McGraw Hill, New York, 1st ed., 1991.

Reference Books:

- Manoj Kumar Gupta, "Power Plant Engineering", PHI Learning Private Limited, 1st ed., 2012.
- G.S. Sawhney, "Non-Conventional Energy Resources", PHI Learning Private Limited, 1st ed., 2012
- Gill A.B, "Power Plant Performance", Butterworth, London, 1st ed., 1984.

Medical Instrumentation

Teaching Scheme	Exam	ination Scheme
Lectures:3 hrs/week	Test-I-	-20
	Test-II	i-20
	End-Se	em Exam- 60

Cours	e Objectives:
•	Study of various sensors, transducers related to biomedical field

- Design and analysis of various biomedical instruments/equipment/devices
- Implementation of signal feature extraction techniques

Unit 1	Bio-potential measurement	(6 hrs)	
Cell structure, basic cell functions, origin of bio-potentials, electrical activity of cells, biological control concept, electrode-electrolyte interface, half-cell potential, polarizable and non-polarizable electrode, electrode circuit model, body surface recording electrodes for electric simulations of tissue, various biomedical transducers.			
Unit 2	Cardio-vascular system	(8rs)	
Structure of electrocardi processing, reduction c Examples of	of heart, rhythmicity, pacemaker cell, ECG theory, ECG ograph, vector cardiograph, ECG analysis, Bio-signal amplifiers basic requirement, op-amp circuit, transient protection, i ircuits, active filters, rate measurement, averaging and integral f physiological signals and systems including feedback systems.	electrodes, and signal nterference tor circuits,	

Unit 3	Central nervous systems and muscular system	(8hrs)	
Receptors, sensory pathways and motor systems, processing sensory information, neural, neuromuscular, sensory muscular and sensory measurements, biofeedback, evoked response, electroencephalography (EEG), EEG amplifier, separation of alpha, beta, theta and delta waves from EEG. Classification of muscles – muscle contraction mechanism, myoelectric voltages, electromyography (EMG), noise removal and signal compensation for reducing ECG artifacts in an EMG recording.			
Unit 4	Cardiovascular measurements, therapeutic devices and life saving devices	(7hrs)	
Heart sound, phonocardiography, PCG analysis to diagnose heart valve disorder, blood pressure measurement (invasive and noninvasive), blood flow meter-magnetic and ultrasound, cardiac output measurement, plethysmography, Short wave diathermy, microwave diathermy, ultrasound therapy unit, transcutaneous electrical nerve stimulators, radiotherapy, Pacemakers and defibrillators, heart lung machine.			
Unit 5	Auditory and vision system	(8hrs)	
audiometer aids. Anato LASER appl and detach	, audiometer system bekesy, evoked response audiometer system my of eye, visual acuity, slit lamp, tonometer, ophthalmoscope, ications in ophthalmology – diabetic retinopathy, glaucoma and ment treatment.	m, hearing perimeter, retinal hole	
Unit 6	Biomaterials	(8hrs)	
Structure a polymers, c interactions	nd property relationships in materials, biocompatibility, metallic omposite materials, biodegradable polymeric material, biologic b of materials with the human body: concepts and applications.	, ceramics, iomaterials,	
Course Ou	tcomes:		
 i. Utilize knowledge of mathematics, Science and Engineering to Biomedical Instrumentation[PEO1] [PO-a] ii. Design different biological signal amplifiers and its analysis [PEO1] [PO-b] iii. Usage of latest hardware and software tools for various biomedical systems design [PEO2] [PO-k] iv. Identify, formulate and solve a given problem of Biomedical Instrumentation [PEO1] [PO-e] 			
Text Book	S		
 Johr Sons Lesli and R. S 	n G. Webster ,"Medical Instrumentation Application and Design", J s Pvt. Ltd,3 rd ed., 2009. e Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Biomedical Instr Measurements", Pearson Education, 2 nd ed. 1980. . Khandpur, "Handbook of Biomedical Instrumentation", TMH, 2 nd	ohn Wiley& umentation ed., 2008.	

Reference Books

- Vander, Shermen, "Human Physiology The Mechanism of Body Functions", TMH, 13th ed., 2013.
- Tompkins, "Biomedical Digital Signal Processing", PHI, 5th ed., 2010.
- John G Webster, "Encyclopedia of Medical Devices and Instruments", Wiley Publications, 1988.
- M. Arumugam, "Biomedical Instrumentation", Amerada Publishers, 2nd ed., 1992.
- Carr and Brown "Introduction to Biomedical Equipment Technology", Pearson LPE, 4th ed., 2001.
- Richard Aston, "Principles of Biomedical Instrumentation and Measurement", Maxwell Macmillan, International ed., 1990.

Digital Control

Teaching Scheme	Examination Scheme
Lectures:3 hrs/week	Test-I-20
	Test-II-20
	End-Sem Exam- 60

- Study of different transform techniques for digital control
- Design of discrete controller for continuous system
- Stability analysis of discrete system

Unit 1	Introduction to digital control	(6hrs)
Configuration of basic digital control system, discrete transfer function, discrete model sampled data systems using z- transform, transfer function model, signal analysis and dynamic response, zero-order hold equivalent, introduction to first-order-hold equivalent, transformation between 's', 'z', 'w' plane, z-Domain description of sampled continuous time systems.		
Unit 2	Controller design	(8hrs)
Controller Design using transform techniques: Root locus and frequency domain analysis compensator design.		

Control system analysis using state variable method, vector and matrices, state variable representation, conversion of state variable to transfer function and vice vers conversion of transfer function to canonical state variable models, system realization solution of state equations.(6hrsUnit 4State space design(6hrsDesign using state-space methods: controllability and observability, control law design pole placement, pole placement design using computer aided control system design (CACSD).(8 hrsUnit 5Observer design, Deadbeat controller design, Delayed system, controller design f delayed systems.(8 hrs)Unit 6Stability Analysis(8 hrs)
Unit 4State space design(6hrsDesign using state-space methods: controllability and observability, control law desig pole placement, pole placement design using computer aided control system desig (CACSD).Iaw designUnit 5Observer design(8 hrsObserver design, Deadbeat controller design, Delayed system, controller design f delayed systems.Iaw designUnit 6Stability Analysis(8hrs)
Design using state-space methods: controllability and observability, control law desig pole placement, pole placement design using computer aided control system desig (CACSD).Unit 5Observer design(8 hrsObserver design, Deadbeat controller design, Delayed system, controller design f delayed systems.(8hrs)Unit 6Stability Analysis(8hrs)
Unit 5Observer design(8 hrsObserver design, Deadbeat controller design, Delayed system, controller design f delayed systems.(8 hrsUnit 6Stability Analysis(8 hrs)
Observerdesign, Deadbeat controller design, Delayed system, controller design f delayed systems.Unit 6Stability Analysis(8hrs)
Unit 6Stability Analysis(8hrs)
Stability analysis and Jury's stability criterion, Lyapunov stability analysis to line systems and discrete systems, Stability improvement by state feedback.
Course Outcomes:
 Ability to design discrete controllers for system in time domain [PEO2][PO-b] Ability to design discrete controllers for system in frequency domain [PEO2][Pob] b]
iii. Ability to analyze stability of a discrete system [PEO1] [PO-a, PO-c]
Text Books
 K. Ogata, "Discrete Control Systems", PHI, 2nd ed., 1995 M. Gopal, "Digital Control and state variable methods", TMH, 2nd ed., 2006
Reference Books
 Isermann, "Digital Control Systems", Springer-Verlag, 1989 B. C. Kuo, "Digital Control System", 2nd ed., 1995

Embedded System

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	

End-Sem Exam- 60	
------------------	--

- Understand RISC architecture. •
- Understanding of ARM development tools. •
- •
- Understanding linux kernel and device driver programming. Study, design and develop various embedded applications using ARM processor. •

Unit 1	ARM-Cortex M series architecture	(6hrs)		
Embedded	systems, classification, ARM 32-bit architecture-techno	logy overview,		
Architectural Features of ARM Cortex M series: CPU modes, register organization,				
instruction set, pipelining, exceptions and its handling, memory, I/O's and addressing				
modes.		1		
Unit 2	Operating system based development	(6hrs)		
Operating	systems fundamentals, operating system services, memory	y management,		
process m	anagement, device management, file management, Op	erating system		
services- pr	ogram execution, I/O operation, file manipulation, communica	ation, Operating		
system pro	perties - multitasking, parallel programming, interactivity,	scheduling and		
scheduling	algorithms,			
Linux: An o	overview of Red Hat Linux, installing Ubuntu, Linux commai	nds, shell script		
programmi	ng, embedded Linux.			
Unit 3	Development Tools (Open source)	(8 hrs)		
GNU tools,	text editors- vi, nano, pico, etc. IDE-Eclipse, code lite, comp	pilers-gcc, g++,		
debuggers,	cross-compilers, gcc- arm specific tool chains and in line as	sembly, Writing		
and compile	ing C/C++ programs, cross-compilation for ARM developmer	it board, Basics		
of make file	e, static and dynamic libraries.			
Unit 4		(onrs)		
Kernel, ba	sic functionalities of kernel, kernel module programming	J, Linux kernel		
sources, ke	ernel configuration, booting kernel, kernel booting param	eters, root file		
system, bo	ot loader, U-boot, porting Linux on ARM board, device drive	r programming,		
architecture	e, i/O communication, writing simple character device driver.			
llpit 5	PTOS	(6hrc)		
Unit 5	RI05	(onis)		
RTOS conce	epts: foreground and background systems, critical section, sh	ared resources,		
tasks, mul	titasking, context switching, kernels, pre-emptive and r	ion-pre-emptive		
schedulers,	static and dynamic priorities, priority inversion, mu	tual exclusion,		
synchronization, inter task communication mechanisms, Interrupts: latency, response				
and recover	ry, clock tick, memory requirements.			
llnit 6	Interfacing and application development	(10bro)		
	The facing and application development			
Interfacing	of: LED, LCD, touch screen, joy stick, and sensors. Devel	opment of web		

server, wireless module interfacing, camera interfacing, open CV on BBB. Control application, Java programming on BBB, porting android for mobile applications like controlling BBB I/O through mobile.

Course Outcomes:

- i. Understanding of RISC architecture of processor, its features and applications [PEO 1] [PO- a]
- ii. Hands on usage of IDE of processors and algorithm development [PEO 1] [PO-k]
- iii. To understand concept of OS, RTOS and application perspectives [PEO 1] [POa]
- iv. Study, design, analyze and prototype various embedded systems [PEO 5] [POb]

Text Books:

- Sloss Andrew N, Symes Dominic, Wright Chris, "ARM System Developer's Guide: Designing and Optimizing", Morgan Kaufman Publication, 2004.
- Michael Beck, "Linux kernel programming", Addison-Wesley Professional, 3rd ed. 2002.

Reference Books:

• Raj Kamal, "Embedded Systems – Architecture: Programming and Design", Tata McGraw-Hill Education, 3rd ed., 2003.

Digital Image Processing

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

- To understand fundamentals of image processing.
- To apply various processes on images for image understanding.
- To study, design and realize various image processing applications.

Unit 1	Introduction and Digital Image Fundamentals	(6hrs)	
Introduction to image processing, origin, examples of fields, steps in image processing, components of image processing system, digital image fundamentals – elements of visual perception, light and electromagnetic spectrum, image sensing and acquisition, mathematical tools used in image processing.			
Unit 2	Intensity Transformations, Spatial Filtering and Filtering in frequency domain	(8hrs)	
Basics intensity transformation functions, histogram processing, fundamentals of spatial filtering, smoothing and sharpening spatial filtering, combinations of image enhancement method, filtering in the frequency domain – Fourier transform of sample functions, DFT of one variable, extension to two variables, properties of 2 D DFTs, selective filtering, realization of FDT, FFT, filter design aspects.			
Unit 3	Image Restoration and Reconstruction	(8 hrs)	
Model of th presence of filtering, es from project	e image degradation / restoration process, noise models, restoration noise only – spatial filtering, periodic noise reduction by frequence timating the degradation functions, inverse filtering, image recon- tions.	on in the y domain nstruction	
Unit 4	Image Segmentation	(7hrs)	
segmentatic segmentatic boundary se	nentation - point, line and edge detection, Thresholding, Region, segmentation using morphological watersheds, usage of r on, edge linking and boundary detection, Hough transform, cha egments, skeletons, boundary descriptors, Fourier descriptors.	ns Based notion in in codes,	
Unit 5	Image Compression	(8hrs)	
Image com variable-len standards, v	pression - image compression - data redundancies elements of inf gth coding, predictive coding, transform coding, image cor vavelets and multi-resolution processing - image pyramids, sub-ban	ormation, npression d coding.	
Unit 6	Object Recognition and Case studies	(8hrs)	
Object Rec theoretic me	ognition- patterns and pattern classes, recognition based on d ethods, structural methods, case studies – image analysis	ecision –	
Course Ou	tcomes:		
i. Appl][PC ii. Desi 2][P iii. To d stud iv. Sele anal	y knowledge of mathematics for image understanding and analysis -a] gn and analysis of techniques / processes for image understandir O- b] esign, realize and troubleshoot various algorithms for image proces ies. [PEO 2][PO-e] ct the appropriate hardware and software tools (Contemporary) for ysis. [PEO 5] [PO-k]	i. [PEO 1 ng. [PEO ssing case for image	

Text Books:

- Gonzalez & Woods, "Digital Image Processing", 3rd ed., Pearson education, 2008
- Jain Anil K., "Fundamentals Digital Image Processing", Prentice Hall India, 2010
- Pratt W.K, "Digital Image Processing", 3rd ed., John Wiley & Sons, 2007

Reference Books:

- Milan Sonka, Vaclav Hlavav, Roger Boyle, "Image Processing, Analysis and Machine Vision", 2nd ed., Thomson Learning, 2001
- Rangaraj M. Rangayyan, "Biomedical Image Analysis", CRC Press, 2005

Optical Instrumentation

Teaching Scheme	Examination Scheme	
Lectures: 3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

- Understand the working of optical fiber as a sensor
- Apply and usage of optical fiber to measure various physical parameters
- Study and identify applications of LASER in instrumentation & measurement

Unit 1	Optical fiber waveguide	(6hrs)	
Ray theory of transmission, total internal reflection, and electromagnetic mode theory of optical propagation, cylindrical fiber, classification of fibers, manufacturing of optical fiber.			
Unit 2	Transmission characteristics of optical fiber	(7hrs)	
Attenuation, material absorption losses, scattering losses, nonlinear and linear scattering, fiber bend loss, dispersion, intermodal dispersion, dispersion modified single mode fiber, dispersion flattened fibers, polarization, nonlinear phenomena.			
Unit 3	Optical sources and detectors	(8hrs)	
Optical emission from semiconductor, semiconductor LASER, non semiconductor LASER, LED as an optical source, optical detector principles, absorption, quantum efficiency, responsively, photo diodes, modulation.			
Unit 4	Optical fiber sensors	(8hrs)	
Introduction to fiber optics sensors, sensors based on intensity modulation, application of optical fiber for displacement, strain, stress and pressure measurement. Active			

multimode FO sensors, micro-bend optical fiber sensors, current sensors, phase modulated, polarization modulated optical fiber sensors, fiber optic gyroscope.				
Unit 5	LASER applications	(7hrs)		
Introducti performar holograph moments	on, application of LASER in biomedical instrumentation, LASER in the parameters, LASER telemeters, measurement of dist y: basic principle of holography, measurement of strain, st and vibrations using hologram.	nterferometry, ance, LIDAR, ress, bending		
Unit 6	Optical amplification and integrated optics	(6hrs)		
Optical amplifiers, integrated optics integrated optical devices: beam splitters, directional couplers, modulators, switches, optoelectronics integration and differentiation, analog arithmetic operations, digital optics.				
Course O	outcomes:			
 i. Apply LASER and Optical fiber for various physical parameter measurements.[PEO 2][PO-c] ii. Analyzing the optical sensor technology on various parameters of measurements. [PEO 2][PO-I] 				
Text Boo	ks:			
 Jose Miguel Lopez, "Optical fiber sensing technology", John Wiley & Sons, 2002 Ajoy Ghatak, "Optics", Tata Mc- Graw Hill Publishing, 5th ed., 2012 				
Reference Book:				
 Joseph T Verdeyen, "LASER Electronics", Prentice Hall of India, 3rd ed., 2003 John M. Senior, "Optical fiber Communications Principles and Practice", PHI publication, 2nd ed., 2008 				

Process Instrumentation Laboratory

Teaching Scheme	Examination Scheme	
Lectures : 3hrs/week	Continuous Evaluation: 50	
	Practical /Oral Exam- 50	

Course Objectives:		
•	To characterize various process parameters.	
•	To design controller suitable for a typical process.	
•	To design the process components.	

List of Experiments:

- 1. Study & analysis of Process flow diagram, design aspects for Boiler, Heat Exchanger, Evaporator, Distillation Column, Spray Dryer.
- 2. Selection of field instruments for Boiler, Heat Exchanger, Evaporator, Distillation Column, Spray Dryer.
- 3. Designing of control valve for liquid/gas/vapor applications as per standard
- 4. Design of orifice plates for liquid/gas/vapor as per ISO 5167
- 5. Design of pneumatic or electric actuator
- 6. Development of control loops for Boiler, Heat Exchanger, Evaporator, Distillation Column, Spray Dryer.
- 7. Study & analysis of flow, pressure, and level control loop (Analysis includes process parameters such as type of process, dead time, capacity etc.)
- 8. Configuration of PID controller for specific loop
- 9. Design and Implementation of cascade controller for a given application.
- 10. Design & implementation of feed-forward controller for a given application.

Course Outcomes:

- i. An ability to design and conduct experiments for process characteristics identification, collect the data from the system and interpret the classification of the system. [PEO1][PO-b]
- ii. An ability to identify, control loop in a given process and apply appropriate control strategy. [PEO1][PO-e]
- iii. An ability to select and use latest hardware and software tools for various processes and systems.[PEO2][PO-k]

Industrial Automation Laboratory

Teaching Scheme	Examination Scheme	
Lectures: 3 hrs/week	Continuous Evaluation: 50	
	Practical /Oral Exam- 50	

Course Objectives:		
•	Understand different architecture for DCS	
•	Configure different blocks in DCS	
•	Design and implement DCS based control for a typical plant	

List of Experiments:

- 1. Study of various architectures of Distributed Control System
- 2. Study of various modules installed/commissioned in DCS
- 3. Start-up procedure for DCS and software aspects for the implementation

- 4. Configuration and commissioning of Digital I/O's for a typical system
- 5. Configuration and commissioning of Analog I/O's for a typical system
- 6. Configuration and commissioning of control block for a typical system
- 7. Configuration and commissioning of logical, timer, counter modules for a typical system
- 8. Configuration and implementation of field bus components.
- 9. Design and deploy communication with external devices/systems using modbus
- 10. Development of GUI for a typical plant
- 11. Development of a alarm, and historian system for a typical process
- 12. Implementation of the logic, GUI, and trends for a typical plant

Course Outcomes:

- i. Understanding of different architecture and blocks in DCS. [PEO-1][PO-c]
- ii. Designing and implementing a DCS based control for plant [PEO-1][PO-e]
- iii. Understanding DCS as tools [PEO-2][PO-k]

Project Engineering Management Laboratory

Teaching Scheme	Examination Scheme
Lectures:3 hrs/week	Continuous Evaluation: 50
	Practical /Oral Exam- 50

Course Objectives:

- Prepare documentation required during Project Engineering Management
- Solve practical problems that arrives during engineering project
- Usage of different tools for project management

List of Experiments:

- 1. Study of various symbols as per ISA used in process industries
- 2. Study of Piping and Instrument diagram for a plant under consideration
- 3. Prepare an Instrument Index sheet for the plant under consideration
- 4. Prepare Specification sheet as per ISA standard for the instruments used in the plant
- 5. Draw loop wiring diagram for various control loops
- 6. Draw hook-up diagram for the minimum 3 field instruments
- 7. Prepare the MCC, JB and cable schedule diagram
- 8. Draw the GA and wiring diagram of the control panel used in the plant
- 9. Prepare the cost estimation sheet for the project under consideration
- 10. Prepare work flow diagram and manpower estimation for the typical project.
- 11. Develop a GA diagram of the plant indicating all the equipment, and system

components.

Course Outcomes:

- i. Preparation of different instrumentation documents for a case project. [PEO-1][PO-c]
- ii. Understand a mock flow of project life cycle [PEO-1][PO-e]
- iii. Understand tools used for project management [PEO-2][PO-k]

Project Stage-I

Teaching Scheme	Examination Scheme	
Lectures:2 hrs/week	Continuous Evaluation: 50	
	Presentation/demonstration: 50	

Course Objectives:

- Exhibit self- learning capabilities to assimilate and practice emerging theories and technologies.
- To understand emerging technology in various industries and appreciate multidisciplinary research.

Course Contents:

To familiarize the students about the standards and practices used in industry/ research organization/In-house research. The study leads towards finalization of the problem statement for project work, which is helpful to establish a link between industry and academia for low cost solution, identification of current need of the society as well as industrial research.

Course Outcomes:

- i. Ability to work effectively in a various team (may be multidisciplinary teams). [PEO3] [PO-d]
- ii. Identify, formulate and solve a problem of Instrumentation and Control Engineering [PEO1] [PO-e]
- iii. Understand the impact of Instrumentation and Control solutions in a global, economic , environmental and societal context [PEO4] [PO-h]

Seminar

Teaching Scheme	Examination Scheme	Exa	
Lectures:2 hrs/week	Continuous Evaluation: 50	Cor	
	Presentation/demonstration: 50	Pre	

Course Objectives:

- Exhibit self- learning capabilities to assimilate and practice emerging theories and technologies.
- Reveal teamwork and effective communication skills.

Course Contents:

Seminar topic would be an emerging technology/ research/ product, study and finalization of the topic, sharing of knowledge with peers and discussion, documentation in the form of report.

List of Experiments:

- i. Ability to understand of contemporary / emerging technology for various processes and systems. [PEO2][PO-j]
- ii. An ability to share knowledge effectively in oral and written form and formulate documents [PEO3][PO-g]

Liberal Learning

Teaching Scheme	Examination Scheme	
	Continuous Evaluation: 50	
	Presentation/demonstration: 50	

Course Objectives:

- To understand and master the learning process
- To identify topic and define the learning

Course Contents:

Identification of topic and resources, scope, and synthesize viewpoints for the areas such as performing arts, basic Sciences, business, philosophy, sports and athletics, defense studies and education.

Course Outcomes:

- i. Ability to exhibit self learning capabilities and its use in effective communication. [PEO3] [PO-g]
- ii. An ability to inculcate impact of various areas to relate with society at large. [PEO4] [PO-h]

Final Year B. Tech (Instrumentation and Control) - Semester VIII

Sr. No.	Subject Title	Course Category	Con L	tact h T	ours P	Credit s
01	Open Elective/Science Elective/Humanities Course	OEC/SEC/H SSC	<mark>3</mark>	-	-	<mark>3</mark>
02	Departmental Elective-III	EC	3	-	-	3
03	Departmental Elective-IV	EC	3	-	-	3
04	Project Stage II		-	-	-	10
05	Intellectual Property Rights	MLC	1	-	-	1
	Total		10	-	-	20

List of Departmental Elective-III and IV

Sr. No.	Elective Course Name
01	Batch Process Control
02	Automotive Instrumentation
03	Clinical Engineering
04	Advanced Control Systems
05	Building Automation
06	Robotics
07	Process Modeling & Optimization

Batch Process Control

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

- Examine the different techniques required for Batch process control
- Study different standards for batch process control.
- Implement the standards for different batch process P&IDs

Unit 1	Introduction		(7hrs)
Introduction of Batch Pro	to Batch Control System, Batch Control system ocesses, Hierarchical Batch Model, Control stru	em ter Icture	rminology, Characteristics for batch systems.
Unit 2	S88 standard		(8hrs)
Role of sta Practices su	ndards in batch control systems, study of ch as S88, S 95, USA FDA regulation, 21CFR 1	f Inte 11, etc	rnational Standards and
Unit 3	Control of batch Process		(6hrs)
sequential information	ntrol requirements, safety interlocking, re control of batch processes, Control activition Handling for a batch process.	guiato es and	d process management,
Unit 4	Design of batch control systems		(6hrs)
Batch mana managemer hardware/re	gement, recipe management, and production It. Batch control system design, system requi liability requirement.	sched remen	uling & information its, system
Unit 5	Specifications and data management		(6hrs)
Batch con requirement	trol system specifications and implem s, cost justification and benefits, data manage	entatio ement	on, Information/display
Unit 6	Implementation & case studies		(7hrs)
Generic imp implementa	lementation of batch processes, Case study o tion for applications in food and beverages, pl	f batch narma	n control system ceuticals etc.
Course Ou	tcomes:		
i. Acqu ii. Deve i]	lired knowledge of standards used for Batch elopment of control schemes for different batc	proce ch proc	ss control (PEO-1)[PO-c] cess P&IDs. (PEO-5) [PO-

Text Books

- Thomas .G. Fisher William M. Hawkins, "Batch Control Systems", ISA series, 1st ed., 2008
- Thomas .G. Fisher William M. Hawkins, "Batch Control Systems", ISA series, 2nd ed., 2012.

Clinical Engineering

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

- Study, design and analysis of various biomedical instruments/ equipment /devices
- Study of electrical safety aspects and safety analyzers
- Study of different bio-imaging modalities

Unit 1	Respiratory instrumentation	(6hrs)
Natural pro	cess of breathing, O_2 and CO_2 transport, regulation of breat	hing, ventilator
terms, spirc	meter, airflow measurement, oxygenators-bubble type, mem	brane type, gas
analyzers, v	entilators.	
Unit 2	Clinical lab instrumentation	(6hrs)
Blood and	its composition and function, electron microscope, blood	cell counters,
electrophore	esis, pulse oximetry, hemoglobin and glucose measurement,	auto analyzer.
Unit 3	Operation room instrumentation	(8hrs)
Electrosurgi	cal unit, anesthesia machine, operation table, autoclave	e, elements of
intensive ca	are unit, bedside monitor, drug delivery system, lithotrip	sy, ICU layout,
introduction	to telemetry and telemedicine.	
Unit 4	Electrical safety	(6hrs)
Significance	of electrical danger, physiological effects of electrical current	t, ground shock
-		

analyzer.		
Unit 5	Concept of rehabilitation engineering	(8hrs)
Skeletal system devices, ov types, mate artificial kid	stem, overview of biomechanics, GAIT analysis, orthotics erview of various orthotics and prosthetic devices materials erials used in wheelchair, joysticks used in wheelchair, Ar ney.	and prosthetic s, wheelchair – tificial organ –
Unit 6	Imaging systems	(8 hrs)
X-rays, im thermograp	age intensifiers, CT scanner, ultrasound scanner, nuc hy, MRI, fusion imaging, artifacts, introduction to image proce	clear methods, essing.
Course Ou	tcomes:	
i. Appl instr ii. Desi iii. Sele [PEC	lication of mathematics, science and engineering rumentation. [PEO1] [PO-a] gn aspects of clinical laboratory instruments and analysis. [PE ct and use latest hardware tools for various biomedical s D2] [PO-k]	to biomedical O1] [PO-b] ystems design.
Text Book	S	
 Carr tech Johr Sons 	and Brown, Englewood Cliffs, "Introduction to biomed nology" N.J. REGENTS / Prentice Hall, 2 nd ed., 1993. G. Webster "Medical instrumentation application and design Pvt. Ltd, 4 th ed., 2009.	ical equipment ", John Wiley &
Reference	Books	
• Jaco	bsons and Webster, "Medicine and clinical engineering", PHI	, illustrated ed.
1977 • Dr. Publ	7. John G Webster, "Encyclopedia of medical devices and instr ication, 1988.	uments", Wiley
 M. A Lesli and 	Arumugam, "Biomedical instrumentation", Anuradha publishers ie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Biomedical measurements", Pearson Education, 2 nd ed., 1980.	s, 4 th ed., 1992.
 R. S Rich Max 	ard Aston, "Principles of biomedical instrumentation", IMH, ard Aston, "Principles of biomedical instrumentation and well Macmillan, International ed., 1990.	2 nd ed., 2008. measurement",
L		

Advanced Control System

Teaching Scheme	Examination Scheme
Lectures:3 hrs/week	Test-I-20
	Test-II-20
	End-Sem Exam- 60

Cours	se Objectives:
•	Analyze nonlinear control system.
•	Implementation of control laws.
•	Estimation of states and disturbances.
•	Design a sliding mode control for matched and unmatched system.

Unit 1	Introduction of Nonlinear Systems	(6hrs)
Nonlinear stability a	systems, inherent and intentional nonlinearities, analysis of nonlin nalysis.	ear systems,
Unit 2	Uncertainties and Disturbances	(8hrs)
Analysis estimatior observer (of uncertainties and disturbances for matched and unmatch n methods, time delay control (TDC), inertial delay control (IDC), (DO).	ed systems, , disturbance
Unit 3	Observer and Controller Design	(8hrs)
Observers disturband	and controllers design, Different control strategies, simultaneo ce observer design.	us state and
Unit 4	Advanced Control	(8hrs)
Advanced	control strategies, optimal control, optical nonlinear control, inv	erse optimal
control fo	r nonlinear affine systems, linear quadratic optimal regulator.	
Unit 5	Sliding Mode Control	(6hrs)
Sliding m	ode control (SMC), chatter control, reaching phase elimination,	sliding mode
control wi	th unknown bounds.	
Unit 6	Sliding Mode Observer	(6hrs)
Sliding mo	ode observer, SMC for unmatched systems, model following contro	bl.

Course Outcomes:

- i. Design controllers for nonlinear systems [PEO2][PO-b]
- ii. Analysis of advanced control strategies for linear and nonlinear systems [PEO2][PO-a,PO-c]
- iii. Stability analysis of nonlinear system [PEO2] [PO-a, PO-c]

Text Books:

- Alberto Isidori, "Nonlinear Control Systems (Communications and Control Engineering)", 2ndEd.,Springer-Verlag, 1995
- C Edwards, S Spurgeon, "Sliding Mode Control: Theory And Applications (Series in Systems and Control)", CRC Press, 1998

Reference Books:

- W.M.Haddad&V.S.Chellabonia, "Nonlinear dynamical systems and control", Princeton publications, 2008.
- M. Vidyasagar, "Nonlinear system analysis", 2nd ed., SIAM publication, 2002.
- J. Gulder, Ma Shijun, Vadim Utkin, "Sliding Mode Control in Electromechanical Systems", 2nd ed., Taylor & Francis Series in Systems & Control Engineering, CRC Press, 1999.

Building Automation

Teaching Scheme	Examination Scheme
Lectures:3 hrs/week	Test-I-20
	Test-II-20
	End-Sem Exam- 60

- Understand the basic blocks of Building Management System
- Design various sub systems (modular system) of building automation
- Integrate all the sub systems

Unit 1	Introduction	(7hrs)
Concept ar requirement automation	nd application of Building Management System (BMS) and ts and design considerations and its effect on functional efficit system, architecture and components of BMS.	nd Automation, ency of building
Unit 2	HVAC system	(6hrs)

compressor to efficiency	omponents of HVAC system like heating, cooling system, s and filter units and their types. Design issues in considerati and economics, concept of district cooling and heating.	chillers, AHUs, ion with respect
Unit 3	Access Control & Security System	(6hrs)
Concept of components control – DA	automation in access control system for safety, Physical secures, RFID enabled access control with components, Computer AC, MAC, RBAC.	rity system with system access
Unit 4	Fire & Alarm System	(6hrs)
Different fin control pan alarm syste	re sensors, smoke detectors and their types, CO and CO els, design considerations for the FA system concept of IP m, design aspects and components of PA system.	2 sensors, Fire enabled fire &
Unit 5	CCTV System & Energy Management System	(6hrs)
Component controlling lighting con	s of CCTV system like cameras, types of lenses, typical transforms, concept of energy management system, occupancy troller.	ypes of cables, sensors, fans &
Unit 6	FRRV Carland A RMC and another Talanalian	<i>(</i>)
	EPBX System & BMS subsystem Integration	(7hrs)
Design cons systems to	sideration of EPBX system and its components, integration design BMS.	(7hrs) of all the above
Design cons systems to	EPBX System & BMS subsystem Integration sideration of EPBX system and its components, integration of design BMS. tcomes:	(7hrs) of all the above
Design cons systems to Course Ou i. Und ii. Desi syste	EPBX System & BMS subsystem Integration sideration of EPBX system and its components, integration of design BMS. tcomes: erstanding of basic blocks and systems for building automatio gning different systems for building automation and integrate ems.[PEO-2][PO-e]	(7hrs) of all the above n[PEO-1][PO-c] those
Design cons systems to a Course Ou i. Unda ii. Desi syste Text Book • Jim ed.,	EPBX System & BMS subsystem Integration sideration of EPBX system and its components, integration of design BMS. tcomes: erstanding of basic blocks and systems for building automatio gning different systems for building automation and integrate ems.[PEO-2][PO-e] Sinopoli, "Smart Buildings", Butterworth-Heinemann imprint o 2010.	(7hrs) of all the above n[PEO-1][PO-c] those
Design cons systems to a i. Unda ii. Desi syste Text Book • Jim ed., Reference	EPBX System & BMS subsystem Integration sideration of EPBX system and its components, integration of design BMS. tcomes: erstanding of basic blocks and systems for building automatio gning different systems for building automation and integrate ems.[PEO-2][PO-e] Sinopoli, "Smart Buildings", Butterworth-Heinemann imprint o 2010. Book	(7hrs) of all the above on[PEO-1][PO-c] those

Robotics

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	

		End-Sem Exam- 60	
--	--	------------------	--

- •
- Study of basics of robot. Understand robot sensors, robot controls, transformations. •
- Study of kinematics and dynamics. •

Unit 1	Basic Concepts	(7hrs)
Definition a	and origin of robotics, different types of robotics, var	ious generations of
robots, deg	rees of freedom, Asimov's laws of robotics, dynamic stabi	lization of robots.
Unit 2	Power Sources	(7hrs)
Hydraulic,	pneumatic and electric drives, determination of HP of	motor and gearing
ratio, variat	ble speed arrangements, path determination, micro machi	nes in robotics.
Unit 3	Manipulators, Actuators and Grippers	(7hrs)
Construction pneumatic r consideratic	n of manipulators – manipulator dynamics and force con manipulator control circuits, end effectors, various types ons.	ntrol, electronic and of grippers – design
Unit 4	Kinematics and Path Planning	(7hrs)
Solution of inverse kinematics problem, multiple solution jacobian work envelop, hill climbing techniques, introduction to robot programming languages.		
Unit 5	Sensors and Intelligent Robots	(7hrs)
Introduction force and to and tactile s	n to robotic sensors, vision systems, Range detectors, as orque sensors, machine vision, ranging, laser, acoustic, r sensors.	sembly aid devices, nagnetic, fiber optic
Unit 6	Case Studies	(7hrs)
Multiple robots, machine interface, robots in manufacturing and non- manufacturing applications, robot cell design, selection of robot.		
Course Ou	tcomes:	
 i. Acquired comprehensive knowledge of robotics in the design, analysis and control point of view.[PEO2][PO-a,k] ii. Understand the various parts of robots and fields of robotics. [PEO1][PO- a, c, l] iii. Apply various kinematics, inverse kinematics of robots and various formulations of Robot dynamics.[PEO1][PO-a,b] 		
Text Book	S	
 Mike 	ell P. Weiss G.M., Nagel R.N., Odraj N.G., "Industrial Rob	otics", McGraw-Hill,

Singapore, 1996.

 Ghosh, "Control in Robotics and Automation: Sensor Based Integration", Allied Publishers, Chennai, 1998.

Reference Books

- Deb.S.R., "Robotics technology and flexible Automation", John Wiley, USA 1992.
- Asfahl C.R., "Robots and manufacturing Automation", John Wiley, USA 1992.
- Klafter R.D., Chimielewski T.A., Negin M., "Robotic Engineering An integrated approach", Prentice Hall of India, New Delhi, 1994.
- Mc Kerrow P.J., "Introduction to Robotics", Addison Wesley, USA, 1991.
- Issac Asimov, "I Robot", Ballantine Books, New York, 1986.

Automotive Instrumentation

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

- Study of Electronic Control Unit.
- Understanding of various automotive standards and Protocols
- Implementation of measurement and control strategies in automotive application.

Unit 1	Introduction of Automobile System	(7hrs)
Current trends in automobiles with emphasis on increasing role of electronics and software, Overview of generic automotive control ECU functioning, Overview of typical automotive subsystems and components, AUTOSAR.		
Unit 2	Engine Management Systems	(7hrs)
Basic sense position ser mass flow s Algorithms electronic i <u>c</u>	or arrangement, types of sensors such as oxygen sensors, cransors, Fuel metering/ vehicle speed sensors, Flow sensor, temper ensors, Throttle position sensor, solenoids etc., for engine control including open loop and closed loop control phition, EGR for exhaust emission control.	ank angle rature, air ol system,
Unit 3	Vehicle Power Train and Motion Control	(7hrs)
Electronic	Transmission Control, Adaptive Power Steering, Adaptive cruise	e control,

Safety and Active susp	comfort systems, Anti-lock braking, Traction Control and Electronic ension control.	: Stability,
Unit 4	Active and Passive Safety System	(7hrs)
Body elect Electronic in automotive Compatibilit bags.	ronics including lighting control, remote keyless entry, immobili nstrument clusters and dashboard electronics, Aspects of hardware including electro-magnetic interference suppression, Electro ty etc., (ABS) Antilock Braking System, (ESP) Electronic Stability Pro	zers etc., design for omagnetic ogram, Air
Unit 5	Automotive Standards and Protocols	(7hrs)
Automotive Automotive (ISO 26262	standards like CAN protocol, Lin Protocol, Flex Ray, OBD-II, Ethernet etc. Automotive standards like MISRA, Functional Safety).	CAN FD, standards
Unit 6	System Design and Energy Management	(7hrs)
BMS (Batte design, Ass	ry Management system), FCM (Fuel Control Module), Principles embly process of automotives and instrumentation systems.	of system
i. Abili ii. Acq iii. Des [PEC Text Book • Willi Reference • You	ty to understand Electronic Control Unit. [PEO-1][PO-c] uire knowledge of various automotive standards and Protocols. [PEO ign aspects of measurement and control strategies in automotive ap D-3][PO-c] s am B. Ribbens, "Understanding Automotive Electronics", 6 th ed., 200 Books ng A.P., Griffiths, "Automotive Electrical Equipment", ELBS & No)-2][PO-f] pplication. 03 ew Press,
199 • Tom Pren • Crou 199 • Becl • Rob 200	 J. Weather Jr. & Cland c. Ilunter, "Automotive computers and contronitice Hall Inc., New Jersey. Jse W.H., "Automobile Electrical Equipment", McGraw Hill Co. Inc., 1 5. hhold, "Understanding Automotive Electronic", SAE, 1998. ert Boshe "Automotive Hand Book", Bentely Publishers, 5th ed. 5. 	l system", New York, Germany,

Project Stage-II

Teaching Scheme		Examination Scheme	
Lectures: 8 hrs/week	(Continuous Evaluation: 50	
		Presentation/demonstration: 50	

Course Objectives:

- To apply current industry accepted process control / automation practices
- To implement new and emerging technologies to analyze, design, maintain reliable, safe, and cost effective solution for industry problems.
- To exhibit teamwork and effective communication skills.

Course Contents:

Literature review to understand current technological development, study, analysis, design, fabrication, testing and calibration of a typical instrumentation and control based process, documentation based on the above mentioned parameters as a final project report.

Course Outcomes:

- i. Ability to implement the principles and practices for instrument / system / equipment / device design and development to real world problems adhering to safety and regulatory standards as applicable. [PEO2] [PO-c]
- ii. Ability to work effectively in a various team (may be multidisciplinary teams). [PEO3][PO-d]
- iii. An ability to understand social impact of automation, safety aspects and hazards associated with various processes in core instrumentation industry [PEO4][PO-f]

Process Modeling & Optimization

Teaching Scheme	Examination Scheme	
Lectures:3 hrs/week	Test-I-20	
	Test-II-20	
	End-Sem Exam- 60	

Cours	se Objectives:
•	Identify the models related with various systems.
•	Apply different types of optimization techniques.

• Study and analysis of nonlinear control strategy.

Unit 1	Modeling of systems	(7hrs)
Thermal system, Hydraulic System, Reactor System.		
Unit 2	Data driven modeling	(7hrs)
Boiler and H	leat exchanger, evaporator, distillation column and spray dryer	
Unit 3	Objective Function Formulation	(7hrs)
Investment functions, t insulation, r	cost, Equipment cost, operational and capitalized costs ime value of money, profitability, Application of these conce rate of production, Thermal system, Hydraulic System, Reactor	s in objective pts to thermal System.
Unit 4	Optimization techniques and applications	(7hrs)
Single and programmir Introduction	d multivariable optimization, line programming, sequen ng and reduce gradient optimization techniques and n to geometric programming and dynamic programming.	tial quadratic applications,
Unit 5	Advanced Controllers	(7hrs)
Model Base Controller u	d controllers (self-tuning & Model reference Adaptive Controlier sing Kalman filter, Model Predictive Controller.	oller), Optimal
Unit 6	Intelligent Controllers	(7hrs)
Expert syst networks &	ems & expert controllers (AI based), Fuzzy Controllers, A ANN Controller, Neuro-Fuzzy Control System, Neuro-MPC.	rtificial Neural
Course Ou	tcomes:	
 i. An ability to apply knowledge of mathematics and science to obtain model of a system.[PEO1][PO-a] ii. An ability to identify, formulate and solve a problem of optimization of a given plant. [PEO1][PO-e] iii. Understanding of different non linear control systems.[PEO2][PO-j] 		
Text Book	S	
 Singiresu S. Rao, "Engineering Optimization Theory and Practices", John Wiley & Sons, 4th ed., 2009 F. G. Shinskey, "Process Control Systems", McGraw-Hill,3rd ed. 1996. Krishna Kant, "Computer based Industrial control, Prentice Hall of India, 1st ed., 2009 G. Stephanopolous, "Chemical Process Control", Prentice Hall of India, 1984 		, John Wiley & 6. ⁻ India, 1 st ed., dia, 1984

Reference Books

- T. F. Edgar, D. M. Himmelblau, "Optimization of chemical Processes", McGraw-Hill International Edition
- W.L. Luyben, "Process modeling, simulation & control for chemical engineers", McGraw Hill, 2nd ed.,1990
- Bela G Liptak, "Instrument Engineers Handbook: Process Control", Chilton, 3rd ed., 1995

Intellectual Property Rights

Teaching Scheme	Examination Scheme
Lectures:1 hrs/week	Test-I-0
	Test-II-0
	End-Sem Exam- 50

- To understand the need of awareness and knowledge about IPR.
- To understand how IPR contributes to the economic development of the society and in turn the nation.
- To understand that IP is a law, economics, technology and business.
- Understand how IPR protection provides an incentive to inventors for further research work and investment in R & D.

Unit 1	Introduction	(2 hrs)
Nature of Intellectual Property, Patents, Designs, Trademarks and Copyrights, Process of patenting and Development-technological research, Innovation, patenting development.		
Unit 2	International Scenario	(2 hrs)
Internationa patenting u	Il cooperation on Intellectual Property, Pinder PCT.	rocedure for grants of patents,
Unit 3	Patent Rights	(3 hrs)
Scope of Patent Rights, Licensing and transfer of technology, Patent information and databases, Geographical Indications.		
Unit 4	New developments in IPR	(3 hrs)
Administration of Patent system, New developments in IPR, IPR Biological systems, Computers, Software etc., Traditional knowledge, Case studies, IPR and IIT's objectives towards learning IPR.		

Unit 5	Trademark and patenting	(3 hrs)
Registered and unregistered trademarks, designs, concepts, idea patenting.		
Course Outcomes:		
 i. Understood the importance of IPR [PEO4][PO-h] ii. Understood how IPR are regarded as a source of national wealth and mark of an economic leadership in the context of global market scenario.[PEO4][PO-h] 		
Text Books		
Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd., 2007		
Reference Books		
 Mayall, "Industrial Design", Mc Graw Hill Niebel, "Product Design", Mc Graw Hill Asimov, "Introduction to Design", Prentice Hall Robert P. Merges, Peter S. Meneil, Mark A. Lemley, "Intellectual Property in New Technological Age" T. Ramappa, S. Chand, "Intellectual Property Rights", Under WTO. 		