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Abstract

In this paper, we define z-ideals in bounded

lattices. A separation theorem for the existence of

prime z-ideals is proved in distributive lattices. As a

consequence, we prove that every z-ideal is the

intersection of some prime zideals. Lastly, we prove

a characterization of dually semi-complemented

lattices.
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Abstract. Let k be a field and let B be an affine normal domain over k. Let φ be a
non-trivial exponential map on B and let A = Bφ be the ring of φ-invariants. Since A is
factorially closed in B, A = K ∩ B where K denotes the field of fractions of A. Hence
A is a Krull domain. We investigate here a relation between the class group Cl(A) of A
and the class group Cl(B) of B. In this direction, we give a sufficient condition for an
injective group homomorphism from Cl(A) to Cl(B). We also give an example to show
that Cl(A) may not be realized as a subgroup of Cl(B).
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algebra.
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1. Introduction

Let k be a field and let B be an affine normal domain over k. Let φ be a non-
trivial exponential map on B and let A = Bφ be the ring of φ-invariants. Since
A is factorially closed in B, A = K ∩ B where K denotes the field of fractions
of A. As a consequence, A is a Krull domain. Moreover, if B is factorial then so
also is A. Now suppose k is an algebraically closed field of characteristic zero and
B = k[X,Y, Z ]/(XY − f (Z)), f (Z) ∈ k[Z ]\k. Then B is a two-dimensional affine
normal domain over k and if f (Z) ∈ k[Z ] is a polynomial of degree n > 1, then
B is not factorial. Let D be a nonzero locally nilpotent derivation on B such that
D(x) = 0, D(z) = x (x, z denote images of X, Z respectively in B). Since characteristic
of k is zero, D induces a non-trivial exponential map φ on B such that Bφ = Ker(D). It
is easy to see that Ker(D) = k[x] (a polynomial algebra in one variable over k) and
hence it is factorial. In view of these results, it is natural to ask the following ques-
tion:
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Abstract. This paper presents some algorithms in linear algebraic groups.
These algorithms solve the word problem and compute the spinor norm
for orthogonal groups. This gives us an algorithmic definition of the
spinor norm. We compute the double coset decomposition with respect
to a Siegel maximal parabolic subgroup, which is important in comput-
ing infinite-dimensional representations for some algebraic groups.
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1. Introduction

Spinor norm was first defined by Dieudonné and Kneser using Clifford alge-
bras. Wall [21] defined the spinor norm using bilinear forms. These days, to
compute the spinor norm, one uses the definition of Wall. In this paper, we
develop a new definition of the spinor norm for split and twisted orthogo-
nal groups. Our definition of the spinor norm is rich in the sense, that it is
algorithmic in nature. Now one can compute spinor norm using a Gaussian
elimination algorithm that we develop in this paper. This paper can be seen
as an extension of our earlier work in the book chapter [3], where we described
Gaussian elimination algorithms for orthogonal and symplectic groups in the
context of public key cryptography.

In computational group theory, one always looks for algorithms to solve
the word problem. For a group G defined by a set of generators 〈X〉 = G,
the problem is to write g ∈ G as a word in X: we say that this is the word
problem for G (for details, see [18, Section 1.4]). Brooksbank [4] and Costi
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